Basics of Electromagnetics - Maxwell's Equations (Part - I)

1. $\oint_{C} \vec{A} \cdot \overrightarrow{d l}=\oint_{C-} \cdot \vec{d} S$
[GATE 1994: 1 Mark]
Soln.

$$
\begin{aligned}
& \oint \bar{A} \cdot \overline{d l}=\iint \nabla \times \vec{A} \cdot \overrightarrow{d a} \text { using Stoke's Theorem } \\
= & \oint_{S} \nabla \times \vec{A} \cdot \overline{d s}
\end{aligned}
$$

2. The electric field strength at distant point, P , due to a point charge, +q , located at the origin, is $100 \mu \mathrm{~V} / \mathrm{m}$. If the point charge is now enclosed by a perfectly conducting metal sheet sphere whose center is at the origin, then the electric field strength at the point, P , outside the sphere, becomes
(a) Zero
(c) $-100 \mu \mathrm{~V} / \mathrm{m}$
(b) $100 \mu \mathrm{~V} / \mathrm{m}$
(d) $50 \mu \mathrm{~V} / \mathrm{m}$
[GATE 1995: 1 Mark]
Soln. The point charge $+q$ will induce a charge $-q$ on the surface of metal sheet sphere. Using Gauss's law, the net electric fulx passing through a closed surface is equal to the charge enclosed $=+q-q=0$
$D=0, E=0$ at point P.

Option (a)

3. A metal sphere with 1 m radius and surface charge density of 10 Coulombs $/ \mathrm{m}^{2}$ is enclosed in a cube of 10 m side. The total outward electric displacement normal to the surface of the cube is
(a) 40π Coulombs
(c) 5π Coulombs
(b) 10π Coulombs
(d) None of the above
[GATE 1996: 1 Mark]
Soln. The sphere is enclosed in a cube of side $=10 \mathrm{~m}$. using Gauss's law, the net electric flux flowing out through a closed surface is equal to charge enclosed.

$$
\begin{aligned}
\oiint_{S} \vec{D} \cdot \overrightarrow{d a} & =Q(\text { enclosed }) \\
& =P_{S} 4 \pi r^{2} \\
& =10 \times 4 \pi \\
& =40 \pi \text { coulombs }
\end{aligned}
$$

Option (a)

4. The Maxwell's equation, $\nabla \times \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t}$ is based on
(a) Ampere's law
(c) Faraday's law
(b) Gauss's law
(d) Coulomb's law
[GATE 1998: 1 Mark]
Soln. Ampere's law states that the magneto motive force around a closed path is equal to the current enclosed by the path

For steady electric fields

$$
\begin{aligned}
\oint_{C} \overrightarrow{\boldsymbol{H}} \cdot \overrightarrow{d \boldsymbol{l}}= & I=\iint \bar{J} \cdot \overrightarrow{d a} \\
\vec{J}= & \overline{\sigma E} \text { is the conduction } \\
& \text { Current density }\left(\mathrm{amp} / \mathrm{m}^{2}\right)
\end{aligned}
$$

For time - varying electric fields:

$$
\oint \vec{H} \cdot \overrightarrow{\boldsymbol{d} \boldsymbol{l}}=\iint\left(\vec{J}+\overrightarrow{J_{d}}\right) \cdot \overrightarrow{\boldsymbol{d}_{a}}
$$

Where $\overrightarrow{J_{d}}$ is the displacement current density $\frac{\partial \vec{D}}{\partial t}$
By Stroke's theorem

$$
\oint \vec{H} \cdot \overrightarrow{\boldsymbol{d} \boldsymbol{l}}=\iint(\nabla \times \vec{H}) \cdot \overrightarrow{\boldsymbol{d a}}
$$

So $\nabla \times \overrightarrow{\boldsymbol{H}}=\overrightarrow{\boldsymbol{J}}+\frac{\partial \vec{D}}{\partial t}$
$\vec{J}+\frac{\partial \vec{D}}{\partial t}$ is the total current density (Conduction current density + displacement current density)

Option (a)
5. The time averaged Poynting vector, in $\mathrm{W} / \mathrm{m}^{2}$, for a wave with $\vec{E}=$ $24 e^{j(\omega t+\beta z)} \overrightarrow{a_{y}} \mathrm{~V} / \mathrm{m}$ in free space is
(a) $-\frac{2.4}{\pi} \overrightarrow{a_{z}}$
(c) $\frac{4.8}{\pi} \overrightarrow{a_{z}}$
(b) $\frac{2.4}{\pi} \overrightarrow{a_{z}}$
(d) $-\frac{4.8}{\pi} \overrightarrow{a_{z}}$
[GATE 1998: 1 Mark]
Soln. $E=24 e^{j(\omega t+\beta Z)} \overrightarrow{a x}$
The wave is travelling in negative Z direction with $|E|=24 \mathrm{~V} / \mathrm{m}$.
Poynting vector $\overrightarrow{\boldsymbol{P}}=\overrightarrow{\boldsymbol{E}} \times \overrightarrow{\boldsymbol{H}}$ instant areous power $/ \boldsymbol{m}^{2}$

$$
\frac{E}{H}=\eta_{0}=120 \pi
$$

Time averaged Poynting vector

$$
\begin{aligned}
\overrightarrow{P_{a v g}} & =P_{Z}\left(-\vec{a}_{Z}\right) \\
& =\frac{|E|^{2}}{2 \eta_{0}}=\frac{(24)^{2}}{2 \times 120 \pi} \\
& =\frac{2.4}{\pi} W / m^{2} \\
\overrightarrow{P_{a v g}} & =\frac{-2.4}{\pi} \vec{a}_{Z} W / m^{2}
\end{aligned}
$$

Option (a)
6. A loop is rotating about the $\mathrm{y}-$ axis in a magnetic field $\vec{B}=$ $B_{0} \cos (\omega t+\phi) \overrightarrow{a_{x}} T$. The voltage in the loop is
(a) zero
(b) due to rotation only
(c) due to transformer action only
(d) due to both rotation and transformer action
[GATE 1998: 1 Mark]
Soln. The magnetic field changing with time

$$
\bar{B}=B_{0} \cos (\omega t+\phi) \overline{a x} T
$$

The voltage induced in a stationary loop due to time changing magnetic filed as given by Faraday's law is

$$
V_{i}=-\iint \frac{\partial \vec{B}}{\partial t} \cdot \overrightarrow{d a}
$$

The voltage induced in a loop moving with velocity v in steady magnetic field is

$$
V_{m}=\oint_{C}(\vec{v} \times \vec{B})=-\iint \frac{\partial \vec{B}}{\partial t} \cdot \overrightarrow{d a}+\oint_{C}(\vec{v} \times \vec{B}) \cdot \overrightarrow{d l}
$$

The voltage induced in loop is due to both rotation and transformer action.

> Option (d)
7. An electric field on a plane is described by its potential $V=20\left(r^{-1}+r^{-2}\right)$ where r is the distance from the source. The field is due to
(a) a monopole
(b) a dipole
(c) both a monopole and a dipole
(d) a quadrupole
[GATE 1999: 1 Mark]
Soln. The potential V_{1} at a point P due to a monopole Q is given by

$$
V_{1}=\frac{Q}{4 \pi \epsilon_{o} r}
$$

The potential V_{2} at the distant point P due to it's dipole is

$$
\begin{aligned}
& V_{2}=\frac{Q d \cos \theta}{4 \pi \epsilon_{0} r} \\
& V=V_{1}+V_{2}=\frac{K}{r}+\frac{K}{r^{2}}
\end{aligned}
$$

Option (c)
8. Identify which one of the following will NOT satisfy the wave equation.
(a) $50^{e^{j(\omega t-3 z)}}$
(c) $\cos \left(y^{2}+5 t\right)$
(b) $\sin [\omega(10 z+5 t)]$
(d) $\sin (x) \cdot \cos (t)$
[GATE 1999: 1 Mark]
Soln. $f(x-c t)$ or $f(\omega t-\beta x)---------$

Represents wave travelling in the positive \mathbf{x} direction with velocity $V=C \quad$ or $\quad V=\frac{\omega}{\beta}$

Accordingly 50 $e^{j(\omega t-\beta z)}$ represents wave travelling in positive Z direction with velocity $V=\frac{\omega}{\beta}$
$\sin \omega(10 z+5 t)=\sin 5(\omega t+\beta z), \beta=2 \omega$
Represents wave travelling in the negative \mathbf{Z} direction
$\sin (x) \cos (t)=\frac{1}{2}[\sin (x+t)+\sin (x-t)]$
Represents standing wave consisting of two waves: one travelling in negative ' x ' direction and other travelling in positive ' x ' direction.
$\cos \left(y^{2}+5 t\right)$ is not of the form $f(x-c t)$ or $f(\omega t-\beta x)$. This function does not satisfy the wave equation.

Option (c)

9. The unit of $\nabla \times H$ is
(a) Ampere
(c) Ampere $/$ meter 2
(b) Ampere/meter
(d) Ampere-meter
[GATE 2003: 1 Mark]
Soln. $\nabla \times H=J+\frac{\partial D}{\partial t} a m p s / m^{2}$

Option (c)

10. $\nabla \times \nabla \times P$, where P is a vector, is equal to
(a) $P \times \nabla \times P-\nabla^{2} P$
(c) $\nabla^{2} P+\nabla \times P$
(b) $\nabla^{2} P+\nabla(\nabla \cdot P)$
(d) $\nabla(\nabla \cdot P)-\nabla^{2} P$
[GATE 2006: 1 Mark]
Soln. $\boldsymbol{\nabla} \times \boldsymbol{\nabla} \times P=\boldsymbol{\nabla}(\boldsymbol{\nabla} . P)-\boldsymbol{\nabla}^{2} P$
Option (d)
11. $\iint(\nabla \times P)$. Ds, Where P is a vector, is equal to
(a) $\oint P . d l$
(b) $\oint \nabla \times \nabla \times P . d l$
(c) $\oint \nabla \times P . d l$
(d) $\iiint \nabla \cdot P d v$
[GATE 2006: 1 Mark]
Soln.

$$
\iint(\nabla \times P) \cdot \overrightarrow{d s}=\oint_{L} \vec{P} \cdot \overrightarrow{d l} \quad \text { using Stroke's Theorem }
$$

Option (a)

12. If C is a closed curve enclosing a surface S, then the magnetic field intensity \vec{H}, the current density \vec{J} and the electric flux density \vec{D} are related by
(a) $\iint_{S} \vec{H} \cdot d \vec{s}=\int_{C}\left(\vec{J}+\frac{\partial \vec{D}}{\partial t}\right) \cdot d \vec{l}$
(b) $\iint_{S} \vec{H} \cdot d \vec{l}=\int_{C}\left(\vec{J}+\frac{\partial \vec{D}}{\partial t}\right) \cdot d \vec{s}$
(c) $\iint_{S} \vec{H} \cdot d \vec{s}=\int_{C}\left(\vec{J}+\frac{\partial \vec{D}}{\partial t}\right) \cdot d \vec{l}$
(d) $\iint_{C} \vec{H} \cdot d \vec{l}=\int_{S}\left(\vec{J}+\frac{\partial \vec{D}}{\partial t}\right) \cdot d \vec{s}$
[GATE 2007: 1 Mark]
Soln. For time varying fields, the ampere's law relating \vec{H}, \vec{J} and \bar{D} is given as:

$$
\nabla \times \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t}
$$

By stroke's theorem

$\oint \vec{H} \cdot \overrightarrow{d \boldsymbol{l}}=\iint_{S}(\nabla \times \vec{H}) \cdot \overrightarrow{d s}=\iint_{S}\left(\vec{J}+\frac{\partial \vec{D}}{\partial t}\right) \cdot \overrightarrow{d s}$

Option (d)

13. For static electric and magnetic fields in an in homogenous source-free medium, which of the following represents the correct form of two of Maxwell's equations?
(a) $\nabla . E=0$
(c) $\nabla \times E=0$
$\nabla \times B=0$
$\nabla \times B=0$
(b) $\nabla \cdot E=0$
$\nabla . B=0$
(d) $\nabla \times E=0$
$\nabla . B=0$
[GATE 2008: 1 Mark]

Soln. Considering the Maxwell's equations for electromagnetic fields,
$\boldsymbol{\nabla} \times \overrightarrow{\boldsymbol{H}}=\overrightarrow{\boldsymbol{J}}+\frac{\partial \vec{D}}{\partial \boldsymbol{t}}$
$\boldsymbol{\nabla} \times \boldsymbol{E}=-\frac{\partial \vec{D}}{\partial t}$
$\nabla . \vec{D}=\rho$
$\nabla \cdot \vec{B}=\mathbf{0}$

For static electric and magnetic fields

$\nabla \times \overrightarrow{\boldsymbol{H}}=\overrightarrow{\boldsymbol{J}}$
$\nabla \cdot \vec{D}=\rho$
$\boldsymbol{\nabla} \times \overrightarrow{\boldsymbol{E}}=\mathbf{0}$
$\nabla \cdot \vec{B}=\mathbf{0}$

Option (d)
14. Two infinitely long wires carrying current are as shown in the Fig below.

One wire is in the $y-z$ plane and parallel to the y-axis. The other wire is in the x -y plane and parallel to the x -axis. Which components of the resulting magnetic field are non-zero at the origin?

(a) x, y, z components
(c) y, z components
(b) x, y components
(d) x, z components
[GATE 2009: 1 Mark]
Soln. When a current I flows in a closed circuits, the magnetic field strength \mathbf{H} at any point is a result of this current flow

$$
d H=\frac{I d l \times \widehat{R}}{4 \pi R^{2}}
$$

\widehat{R} is the unit vector in direction of R. The direction of H is perpendicular to the plane containing Idl and R.in the direction in which right hand screw would move in turning from Idl to R. The first current element is in Y direction and \widehat{R} is in Z direction. H is in X direction.

The second current element is in \mathbf{X} direction and \widehat{R} is in Y direction. H is in Z direction

$$
\begin{aligned}
& \text { Resultant } B=\overrightarrow{B_{1}}+\overrightarrow{B_{2}} \\
& \qquad B_{0}\left(K_{1} \overrightarrow{a_{x}}+K_{2} \overrightarrow{a_{z}}\right)
\end{aligned}
$$

Option (d)

15. The electric field component of a time harmonic plane EM wave traveling in a non-magnetic lossless dielectric medium has amplitude of 1 V / m. If the relative permittivity of the medium is 4 , the magnitude of the time-average power density vector (in $\mathrm{W} / \mathrm{m}^{2}$) is
(a) $\frac{1}{30 \pi}$
(c) $\frac{1}{120 \pi}$
(b) $\frac{1}{60 \pi}$
(d) $\frac{1}{240 \pi}$
[GATE 2010: 1 Mark]
Soln. Time average power density $=\frac{1}{2} E H$

$$
\boldsymbol{P}_{a v}=\frac{1}{2} \times \frac{E^{2}}{\eta}
$$

Intrinsic impedance of EM wave $\gamma=\sqrt{\frac{\mu}{\epsilon}}$

$$
\eta=\sqrt{\frac{\mu_{0}}{4 \epsilon_{0}}}=\frac{120 \pi}{2}=60 \pi
$$

$$
\begin{aligned}
P_{a v} & =\frac{E^{2}}{2 \eta}=\frac{1}{2 \times 60 \pi} \\
& =\frac{1}{120 \pi}
\end{aligned}
$$

Option (c)

16. Consider a closed surface S surrounding a volume V . If \hat{r} is the position vector of a point inside S, with \hat{n} the unit normal on S, the value of the integral $\oint 5 \vec{r} . \hat{n} d s$ is
(a) 3 V
(c) 10 V
(b) 5 V
(d) 15 V
[GATE 2011: 1 Mark]
Soln. S is a closed surface surrounding a volume V

$$
I=\oiint 5 \bar{r} \cdot \vec{n} d s
$$

In spherical coordinates, differential area in $\overrightarrow{\boldsymbol{a}_{\boldsymbol{r}}}$ direction in $\quad \overrightarrow{\boldsymbol{a}}_{\boldsymbol{r}}$ direction

$$
\begin{aligned}
& d s=(r d \theta) \cdot(r \sin \theta d \phi)=r^{2} \sin \theta d \theta d \phi \\
& I=\iint 5 r \cdot \vec{n} r^{2} \sin \theta d \theta d \phi
\end{aligned}
$$

$$
=\int_{0}^{\pi} \int_{0}^{2 \pi} 5 r^{3} \sin \theta d \theta d \phi
$$

$$
=5 r^{3} \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi
$$

$$
=5 r^{3}(2)(2 \pi)=20 \pi r^{3}
$$

$$
=15\left(\frac{4}{3} \pi r^{3}\right) \text { volume of sphere }=\frac{4}{3} \pi r^{3}
$$

$$
=15 \mathrm{~V}
$$

Option (d)
17. Consider the following statements regarding the complex Poynting vector \widehat{P} for the power radiated by a point source in an infinite homogeneous and lossless medium. $\operatorname{Re}(\hat{P})$ denotes the real part of $\hat{P}, \mathrm{~S}$ denotes a spherical surface whose centre is at the point source, and \hat{n} denotes the unit surface normal on S . Which of the following statements is TRUE?
(a) $\operatorname{Re}(\hat{P})$ remains constant at any radial distance from the source
(b) $\operatorname{Re}(\hat{P})$ increases with increasing radial distance from the source
(c) $\oint_{S} \operatorname{Re}(\vec{P}) \cdot \hat{n} \mathrm{~d}$ S remains constant at any radial distance from the source
(d) $\oint_{S} \operatorname{Re}(\vec{P}) \cdot \hat{n} \mathrm{~d} S$ decreases with increasing radial distance from the source.

Soln. $\oint_{S} R_{e}(\overline{\boldsymbol{P}}) . \widehat{n} d s$ gives average power and it decreases with increasing radial distance from the source
$\bar{P}=\bar{E} \times \bar{H}$ is a measure of energy flow per unit area. watts $/ \boldsymbol{m}^{2}$
Option (d)
18. Consider a vector field $\bar{A}(\bar{r})$. The closed loop line integral $\oint \vec{A} \cdot \overrightarrow{d l}$ can be expressed as
(a) $\oiint(\nabla \times \vec{A}) \cdot d \vec{s}$ over the closed the closed volume bounded by the loop
(b) $\oiiint(\nabla \cdot \vec{A})$ dv over the closed volume bounded by the loop
(c) $\iiint(\nabla \times \vec{A})$ dv over the open volume bounded by the loop
(d) $\iint(\nabla \times \vec{A}) \cdot d \vec{s}$ over the open surface bounded by the loop
[GATE 2013: 1 Mark]
Soln. $\oint \vec{A} \cdot \overrightarrow{d l}=\iint(\nabla \times \bar{A}) \cdot \overrightarrow{d s}$ over the open surface bounded by the loop, using Stroke's theorem.

Option (d)

19. The divergence of the vector field $\vec{A}=x \hat{a}_{x}+y \hat{a}_{y}+z \hat{a}_{z}$ is
(a) 0
(c) 1
(b) $1 / 3$
(d) 3
[GATE 2013: 1 Mark]

Soln. $\vec{A}=x \hat{a}_{x}+y \hat{a}_{y}+z \hat{a}_{z}$

$$
\begin{aligned}
& \operatorname{dia} \overrightarrow{\boldsymbol{A}}= \nabla \cdot \overrightarrow{\boldsymbol{A}} \\
&=\left(\frac{\partial i}{\partial x}+\frac{\partial i}{\partial y}+\frac{\partial k}{\partial z}\right) \cdot\left(x \hat{a}_{x}+y \hat{a}_{y}+z \hat{a}_{z}\right) \\
&=\left(\frac{\partial \boldsymbol{i}}{\partial x}+\frac{\partial i}{\partial y}+\frac{\partial k}{\partial z}\right) \cdot(x \boldsymbol{i}+\boldsymbol{y} \boldsymbol{i}+2 \boldsymbol{k}) \\
&= \mathbf{1}+\mathbf{1}+\mathbf{1}=\mathbf{3} \\
& \quad \boldsymbol{i} \cdot \boldsymbol{i}=\boldsymbol{i} \cdot \boldsymbol{i}=\boldsymbol{k} \cdot \boldsymbol{k}=\mathbf{1}
\end{aligned}
$$

Option (d)

20. The force on a point charge $+q$ kept at a distance d from the surface of an infinite grounded metal plate in a medium of permittivity ϵ is
(a) 0
(b) $\frac{q^{2}}{16 \pi \in d^{2}}$ away from the
(c) $\frac{q^{2}}{16 \pi \in d}$ towards the plate
(d) $\frac{q^{2}}{4 \pi \in d^{2}}$ towards the plate plate
[GATE 2014: 1 Mark]
Soln.

Force $\bar{F}=\frac{q \times q}{4 \pi \varepsilon(2 d)^{2}}$
$=\frac{q^{2}}{16 \pi \epsilon d^{2}}$
Force is attractive and towards the plate
Option (c)

